Protocol Compiler - Feature #21660

Feature # 21659 (New): Redesign the output from the Javascript generator.

Use class syntax for request, reply, and structs in Javascript generator
01/11/2019 10:02 AM - Richard Neswold

Status: New Start date: 01/11/2019
Priority: Normal Due date:

Assignee: % Done: 0%
Category: Javascript Generator Estimated time: 0.00 hour
Target version: Protocol Compiler v1.2

Description

class syntax
Change the Javascript output to use the class keyword syntax for messages. For example, the following source file:

request example {
string name;

int32 age;
}
generates:
var JUNK_request_example = function () {
this.name = "";

this.age = 0;
bi

JUNK_request_example.prototype.marshal = function* () {
yield* [83, 68, 68, 2, 81, 3, 20, 12, 130, 31, 103, 18, 245, 24, 81, 4];
yield* [18, 147, 28];
yield* PROTOCOL.m_string(this.name);
yield* [18, 125, 39];
yield* PROTOCOL.m_int (this.age);
}i

With the new generator, it should look something like:

class JUNK_request_example {
constructor () {
this.name = "";
this.age = 0;

*marshal () {
yield* [83, 68, 68, 2, 81, 3, 20, 12, 130, 31, 103, 18, 245, 24, 81, 4];
yield* [18, 147, 28];

yield* PROTOCOL.m_string(this.name);
yield* [18, 125, 39];
yield* PROTOCOL.m_int (this.age);

bi

Using Inheritance

The code can use minimal inheritance features to logically tie all requests together and all replies together. Requests and replies
would be derived from a simple request and reply base class, respectively, that only has a static method to unmarshal messages of
that type.

In the case of the request base class, we would also add to its prototype property a reference to the reply base class' unmarshal

method. Currently, when the ACNET Javascript code is given a message to send, it checks to see if the message object has a
marshal() method and, if so, uses it to encode the message. The ACNET module could also use this extra property to automatically

09/23/2020 12




unmarshal replies before delivering them to the associated callback.
// Start of Reply hierarchy.

class JUNK_replybase {
static unmarshal (o) {

// ... other Reply messages
// Start of Request hierarchy.
class JUNK_requestbase {

constructor () {
this.replyDecoder = JUNK_replybase.unmarshal;

static unmarshal (o) {

class JUNK_request_example extends JUNK_requestbase {
constructor () {
super () ;

}i

Note the base class names don't have an underscore before the "base" portion of the name. This is intentional due to how we
generate names; if a protocol had a message named "base", it would get mapped to the name PROTO_request_base, which would
conflict with the automatically generated base class.

History

#1-01/11/2019 10:03 AM - Richard Neswold
- Assignee deleted (Richard Neswold)

No ready to claim this issue yet.

#2 - 01/11/2019 03:05 PM - Richard Neswold

- Description updated

Add more features after discussion with Beau.

#3 - 01/11/2019 03:08 PM - Richard Neswold

- Description updated

Fix typo.

#4 - 04/01/2019 03:08 PM - Richard Neswold

- Tracker changed from Support to Feature

#5 - 04/05/2019 12:49 PM - Richard Neswold

- Description updated

Rewrite inheritance example. This new layout doesn't require the use of “Object.defineProperty()

09/23/2020 22



http://www.tcpdf.org

